

The Lunar Quest Program and the International Lunar Network (ILN)

Dr. Barbara Cohen
Barbara.A.Cohen@nasa.gov
Planetary Scientist (VP62)
NASA Marshall Space Flight Center
Briefing to MSFC OSAC 1/30/09

Lunar & planetary science at MSFC

Lunar Quest Program

Lunar activities within NASA

Surface Systems OSEWG Research & Analysis NASA Lunar Science Institute

Lunar activities at MSFC

Lunar Quest Program

Lunar Precursor Robotics Program Lunar Environments Lunar Soil Simulants Ares/Altair

Lunar & planetary science group

Dr. Barbara Cohen, ILN Project Scientist Dr. Sarah Noble, LMMP project scientist Dr. Jennifer Edmunson (postdoc)

Core capability in planetary surface missions & instruments

Core capability in planetary sample analysis

- The Lunar Quest Program is a Science-based program with the following goals:
 - Fly small/medium science missions to accomplish key science goals
 - Build a strong lunar science community
 - Provide opportunities to demonstrate new technologies
 - Where possible, help ESMD and SOMG goals and enhance presence of science in the implementation of the VSE
- The Lunar Quest Program will be guided by recommendations from community reports, such as
 - Planetary Decadal Survey
 http://www.nap.edu/catalog.php?record_id=10432
 - Scientific Context for the Exploration of the Moon <u>http://books.nap.edu/openbook.php?record_id=11954</u>
- Project management will be assigned
- Science and generally, science instruments will be competed

Lunar Quest Missions

- NASA Lunar Science flight projects
 - Robotic missions to accomplish key scientific objectives
 - Provide useful data to ESMD and SOMD for returning humans to the Moon
- Mission 1: Lunar Reconnaissance Orbiter (LRO)
- Mission 2: Lunar Atmosphere and Dust Environment Explorer (LADEE)
- Mission 3: US landers as part of the International Lunar Network (ILN)

These projects provide a robotic lunar flight program for the next decade, complement SMD's lunar R&A initiatives to build a robust lunar science community, and increase international participation in NASA's exploration plans

Lunar Mission timeline

Moon Mineralogy Mapper (M3) (2008)

- Mission of Opportunity under the Discovery Program - PI Carle Pieters, Brown University
- Mapping spectrometer on India's Chandrayaan-1 orbiter (launched Fall 2008)

M3 Objectives:

- Produce a global mineralogical map of the lunar surface at 140m spatial and 40 nm spectral resolution
- Investigate specific targets at high spatial and spectral resolution
- Investigate the possibility of water ice at the lunar poles

LRO (2009)

Lunar Reconnaissance Orbiter (LRO) – first step back to the Moon in the Vision for Space Exploration. Focus is on datasets to help plan future human activities. Goddard project, managed under LPRP at MSFC

LRO Objectives:

- Characterize the lunar radiation environment, biological impacts, & potential mitigations. Develop a high res global, 3D geodetic topographical grid of the Moon for selecting future landing sites.
- Assess the resources & environments of the Moon's polar regions.
- High spatial resolution assessment of the Moon's surface addressing elemental composition, mineralogy, & regolith characteristics

LCROSS (2009)

Lunar Crater Observation & Sensing Satellite - secondary payload on LRO vehicle, Ames project under LPRP management at MSFC

LCROSS Objectives:

- Confirm the presence or absence of water ice in a permanently shadowed crater at a lunar pole
- Create an ejecta plume and analyze it for the presence of water (ice and vapor), hydrocarbons and hydrated materials
- Provide technologies and modular, reconfigurable subsystems that can be used to support future mission architectures

ARTEMIS (2010)

- ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun) moves two THEMIS (Heliophysics MIDEX mission) satellites into orbits around the Moon
- ARTEMIS objectives: Study the lunar space environment, solar wind, magnetotail and lunar wake using MIDEX particles and fields instrumentation.

GRAIL (2011)

- Gravity Recovery and Interior Laboratory Discovery mission led by Dr. Maria Zuber at MIT
- Based on GRACE on the Earth twin spacecraft with mutual microwave ranging to very precisely map the moon's gravity field

GRAIL Objectives:

- Determine the structure of the lunar interior from the crust to core
- Advance the understanding of the thermal evolution of the moon extending to other planets

LADEE (2012)

Lunar Atmosphere, Dust and Environment Explorer - Ames/GSFC project, managed by Lunar Quest Program at MSFC

LADEE objectives:

- Determine the global density, composition, and time variability of the fragile lunar atmosphere before it is perturbed by further human activity
- Determine if the Apollo astronaut sightings of diffuse emission at 10s of km above the surface were Na glow or dust
- Document the dust impactor environment (size-frequency) to help guide design engineering for the outpost and also future robotic missions.

ILN Anchor Nodes (2016)

ILN is a geophysical network that accomplishes high priority science by coordinating landed stations from multiple space agencies

ILN Anchor Nodes: 2-4 US landers planned. Project jointly implemented by MSFC/APL, managed by Lunar Quest Program at MSFC

The ILN and the Anchor Nodes

- A geophysical network is a very demanding mission and the science community acknowledges it would be difficult for a single space agency to accomplish
- The International Lunar Network (ILN) is an NASA-coordinated effort designed to coordinate international contributions to a geophysical network on the lunar surface.
 - Each ILN station will fly a core set of instruments requiring broad geographical distribution on the Moon, plus additional passive, active, ISRU, or engineering experiments, as desired by each sponsoring space agency.
 - 24 July 2008: ILN Charter Signing Ceremony formed ILN Landing Site, Communications, and Core Instrument Definition Working Groups:
 Canada, Italy, France, Germany, Japan, Korea, India, UK
- The US is currently planning to provide multiple ILN nodes (the Anchor Nodes) through an MSFC/APL partnership – this mission.

A Lunar Geophysical Network

- The Moon uniquely preserves a record of early planetary evolution
- The Moon is a terrestrial body it formed and evolved in a similar manner to Earth, Mars, Mercury, Venus, and large asteroids
- The Moon is a differentiated body, with a layered internal structure (crust, mantle, and core)
- The Moon is an active body, experiencing thousands of deep moonquakes each year, releasing primordial heat, conducting electricity, and wobbling in its orbit

The goal of a Lunar Geophysical Network is to understand the interior structure and composition of the moon

Anchor Nodes Science Definition Team

Lunar Quest Program

- A Lunar Geophysical Network has been recommended by the Scientific Context for the Exploration of the Moon (2007), the Tempe meeting (2007), and New Frontiers in the Solar System (2008)
- To explore this recommendation, NASA HQ convened an independent Science Definition Team to address what science is uniquely enabled by a network. *Final Report, January 2009* http://lunarscience.arc.nasa.gov/file_download/26/ILN+Final+Report.pdf

♦ Defined ILN science objectives ⇒ derived mission objectives ⇒

measurement and mission requirements

The next generation of geophysical measurements have to improve on our current (largely Apollo-derived) knowledge

- wider geographical placement
- more sensitive instrumentation
- longer baseline of observations

Science objectives and mission drivers

Objective	Instrument			
Understand the current seismic state and determine the internal structure of the Moon	Three axis broadband seismometer			
Measure heat flow to characterize the temperature structure of the lunar interior	Temperature and thermal conductivity measurements to depths > 3 m			
Use electromagnetic sounding to measure the conductivity structure of the lunar interior	Electromagnetic sounding experiment			
Determine deep lunar structure by installing next-generation laser ranging capability	Laser ranging experiment			

Science objectives and mission drivers

- ♦ Operations: Seismic stations must operate in concert with one another → simultaneously and continuously operational (day and night)
- ♦ Number of nodes: Need to independently determine the lunar interior composition and structure → 4 nodes
- Lifetime: Must operate for sufficient time to receive enough signals, span one lunar tidal cycle and exceed the Apollo lifetime → 6 years
- ♦ Location: Must be located >2000 km apart from each other → Strong science desire for farside access to investigate global properties

- Anchor nodes project is in Pre-Phase A
- MSFC and APL completed and presented eight different mission concept design studies to HQ/SMD
 - Detailed concept engineering analysis and parametric cost estimates were provided.
 - Variations of nuclear powered landers on multiple launch vehicles
 - Variations of solar array/battery powered landers on multiple launch vehicles
 - Phasing of lander launch configurations and dates
- Project is continuing to work on risk reduction tests and activities to support development of a lunar robotic lander
 - activities for each subsystem
 - MSFC, APL, Ames, JPL, GRC and the local contractor base all providing various tasks
 - Lunar lander testbed

Baseline Science Lander Summary

- Direct trajectory to moon with solid stage providing braking burn.
- Structure includes composite decks and metal landing legs for soft landing.
- Liquid bi-propellant landing using high pressure lightweight thrusters and custom tanks.
- Power provided by Derivative ASRG (DASRG) nuclear power source with small batteries to handle peak power.
- Daily data transmission to DSN ground station
 - Small warm electronics enclosure with heat pipes & radiator requires no heater power on surface.
 - Landing cameras for horizontal velocity, drives sunlit landing (3-4 day launch window).
 - Single string electronics with parts selected and tested for 8 year life & radiation tolerance.

Lander Configurations / Launch Vehicles

4	~	1	1
N	A	3/1	1
	×	J.	
1			

						Lunar Q	uest Program
	Minotaur V	Taurus II	Delta II	Falcon 9 B1	Falcon 9 B2	Atlas V 401	Key Lander Risks
- F	413 kg CCAFS	1250 kg	1285 kg	2000 kg	2680 kg	3580 kg	
Case 1 DASRG Lander (Floor or Baseline Science)		2 landers	2 landers	2 landers	2 landers (likely 3)	4 landers	- DASRG new development -Propellant tank new development
Case 2 DASRG Lander (1/2 Floor Science)	1 lander		100	ferred to a for lowest r			- DASRG new development -Mass Margins Propellant tank new development - Solid Motor new development
Case 3 DASRG Land (Floor or Baseline Scienc.,				2 landers	2 landers		- DASRG new development
Case 4 Battery / Solar Lander (Floor or Baseline Sc	baseline Scien						
Case 5 Battery/Sc Hard Lander w / penetrator (Floor or Baseline Science)					2 landers	2 landers	- Mass Margins -Air bag new technology - Penetrator performance
Launch Vehicle Risks	-UpgradeotfilmofV - Ristlaunch offilmofV RusSquatts - Regulass Walkerto	-Indesign -Estimated Rist Launch Dec 2010	-CostHakt associated with maintaining	- Indesign - Estimated Rist Launch early 2009	-Indesign - Estimated Rist Laundh 2010		
	Commer Space Act - Not approved for CCA PS binotice filed formudes*	Ismotoettied tormudear	ground tadtics	-Ismator#fed formudear	-tampi certified for mudear		-20

MSFC Lunar Lander Test Bed

- Phase 1 prove out MSFC test facility
 - Ames lent their hover lander
 - Successfully completed 12/17/08
- Phase 2 implement MSFC "ILN-Like" test vehicle
 - Cold gas propulsion system
 - Primarily supports demonstration of **GN&C** algorithms
 - Demonstrations by May 2009
- Phase 3 integrate flight-like components for risk reduction tests
 - Landing sensors (cameras, altimeters), Instruments, Structure features (legs)
 - Alternative prop systems for descent and landing tests

- The Lunar and Planetary Science group at Marshall provides core capabilities to support the Agency's lunar exploration goals
- ILN Anchor Nodes are currently in development by MSFC and APL under the Lunar Quest Program at MSFC
- The Science Objectives of the network are to understand the interior structure and composition of the moon
- Pre-phase A engineering assessments are complete, showing a design that can achieve the science requirements, either on their own (if 4 launched) or in concert with international partners
- Risk reduction activities are ongoing

Backup

→ ILN Project Organization

ILN Anchor Nodes Project Organization

